DTSA-II - QC

Nicholas W. M. Ritchie Physicist, Microanalysis Research Group National Institute of Standards and Technology Gaithersburg, MD 20899-8371

nicholas.ritchie@nist.gov

Why?

- Is your instrument working correctly?
 - How can you demonstrate it?
- Was your instrument working correctly when a specific data set was collected?
 - How can you demonstrate it?
- Would you know if your instrument performance has degraded by 10%, 1%?
 - Are the standards you collected yesterday / a week ago / a year ago still good?

What could possibly go wrong?

- Bad energy scale calibration
 - Gain or zero offset out of calibration
- Noise at low energy or wacky Bremsstrahlung
 - Electrical, light, acoustic noise, ground loops
- Change in detector efficiency
 - Window contamination, detector position, obstruction, icing
- Deterioration in resolution
 - Electrical, light, acoustic noise, misconfiguration, ground loops
- Floating ground
 - Stage not grounded

Strategy

- Collect a spectrum
 - from a established material
 - at a consistent beam energy, probe current, live time
 - with a consistent working distance, geometry.
- Extract numeric metrics
 - Resolution, calibration, intensity etc
- Track the metrics
 - Plot them on QC charts

Example control charts

6/15/12

132

130

2/1/13

4.4

9/21/13

5/1 69/1148/14

6 4 44

What does my QC look like?

• Sample: Pure Cu

Beam energy: 20 keV

Probe current: 1 nA

• Live time: 60 s

Working distance: 17 mm

Processor setting: Medium

I collect a new QC every day I collect a new set of quantitative microanalysis data.

Nicholas W. M. Ritchie, NIS7

A summary of the results is added to the daily Report.

QC Measurement Recorded

Spectrum	Pure copper[Wed Apr 23 080417 2014][2]	
Index	357	
Timestamp	2014-04-23 08:04:00.172	
Project	Pure copper at 20.0 keV on Detector 2	

Name	Value	First 10	Last 10	All
Brem Counts	17616.607	15162.162±379.378	17191.610±308.112	17248.179±8509.634
Channel width	9.9991±0.0002	9.9977±0.0115	9.9958±0.0061	9.9998±0.0193
Cu Ka	8783.620±14.224	7501.397±135.078	8521.800±144.388	8248.026±4017.949
Си КВ	1228.574±5.320	1022.609±18.033	1186.614±24.227	1144.741±558.908
Cu L-family	19161.918±21.008	16329.023±684.818	18544.781±296.238	18261.616±9043.992
Dose	43.416	58.579±3.462	43.204±24.191	32.860±18.005
Duane-Hunt	19.8988	19.9247±0.0395	19.9065±0.1277	19.8649±0.1140
FWHM @ Mn Ka	132.476±0.040	131.836±0.287	132.119±0.340	132.726±3.097
Fano Factor	0.120	0.117±0.001	0.120	0.120±0.001
Noise	6.664±0.011	6.800±0.023	6.566±0.093	6.696±0.743
Total counts	2031524.000	2344753.900±164191.258	1958076.100±1081892.462	1372116.534±792048.818
Zero offset	0.747±0.048	2.488±0.204	0.788±0.142	1.403±2.720

You can also generate a more comprehensive QC report with control charts.

QUALITY CONTROL REPORT - APR 23, 2014

NIST DTSA-II Version Halley 2014-04-04
EPQ Version Halley 2014-04-04
Operator Tescan

Item	Value
Detector	Detector 2 - FWHM[Mn Ka]=128.0 eV - initia
Beam Energy	20.0 keV
Material	Pure copper

Channel width

Cu Ka

Cu Kß

Cu L-family

۱. Ritchie، NIS٦

